

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University
A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR
JYOTHI HILLS. VETIKATIRI P.O. CHERUTHURUTHY, THRISSUR. PIN-679531 PH; +91-4884-259000, 274423 FAX: 04884-274777

Each Recommendation of the Conference of the Con

INDEX LINK

2.6.2: Attainment of Programme outcomes and Program Specific outcomes are evaluated by the institution.

SL.N O	DOCUMENT TYPE	PAGE NUMBE R
1	PO-PSO MAPPING	2-4
2	PO - PSO ATTAINMENT	4
3	PO ACTION PLAN	4-7
4	PSO ACTION PLAN	7
5	PO and PSO ASSESMENT TOOLS	8
6	MAPPING OF EXTRA/CO CURRICULAR ACTIVITIES TO POS AND PSOS	9
7	EXIT SURVEY ON PO -PS	10-11
8	ALUMNI SUREVEY ON PO -PS	12-14
9	EMPLOYER FEEDBACK	15-16

TT1' sled

Dr. SUNNY JOSEPH KALAYATHANKAL M.Tech, MCA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Maths)

Jyothi Engineering College Cheruthuruthy P.O. - 679 531

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR JYOTH HILLS, VETILATIRIP P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 PH: +91-4884-287000, 274423 FAX: 0-4884-274777 acadited 8, Tech Programmes in Computer Science & Engineering, Electronics & Communication Engineering valid for the academic years 2016-2022. NBA accredited 8.Tech Programme in CVII Engineering valid for the academic years 2019-2022.

DEPARTMENT OF CIVIL ENGINEERING MAPPING OF POs AND PSOs FOR 2015-19 BATCH

Mapping weights 1: Low 2: Medium 3: High

DIRECT ATTAINMENT

SEMESTER	PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
	C101	3	2.5	1.3	-	1	1	1		1	1	1	2	0.8	0.7
	C102	3	2.5	1.5	1	1	1.3	1.3	1	1	1.6	1	1.2	1	1
	C103	3	3	3	2.2	2.8	2.8	2.2	2.4	1.8	1.4	1.4	2	1.6	2.2
	C104	2.7	1.8	2.2	2.2	2	2.3	2.3	1	2.2	2	1.7	2.3	2	2
1	C105	2.8	3	2.6	2.6	2.3	2	2.3	1.5	3	3	2	2	-	2.8
1	C106	2.1	2.2	2.1	1.9	1.6	1.6	1.8	1.6	-	2.2	-	1.3	1.2	1.2
	C107	2.9	2.4	1	1.5	1.7	1	1	1	1	1	1	1	1	1
	C108	1.9	1.6	1.3	-	1.9	0.9	-	0.9	1.9	0.9	0.9	0.9	0.9	0.9
	C 109	3	2.5	2.3	1.8	3	1	1	1.7	2.3	1	2.5	2.3	1.7	2
	C110	3	3	1	-	-	2	1	-	1	1	-	2	0.8	0.7
	C111	2.5	2	2.3	2.5	3	2.5	2	2	2	2	3	2	*	1
	C112	2.8	2.8	2.4	2.4	2.8	0.9	2.1	2.6	1.4	1.4	2.6	2.4	2.8	2.1
	C113	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.3	2.8	2.8	2.8	2.8
2	C114	1.8	1.6	0.9	1.1	-	-	-	-	-	-	-	0.9	-	0.9
	C115	2.9	2.5	1.7	1.9	1.9	1.9	1.9	1.9	1.9	1.4	-	-	-	1
	C116	2.6	1.9	2.6	2.2	2.2	2.2	2.2	1.9	2.4	1.9	1.9	1.9	-	1
	C117	2.2	1.5	1.3	1.8	-	2.2	0.9	0.9	-	-	0.9	0.9	-	0.9
	C118	2	2	1.7	2	2	2	2	2	2	1.5	-	-	-	1
	C201	2	1.8	1.3	-	-	-	(-)	-	1	-	-	1	1	-
	C202	2.9	2.9	2.4	1.9	1.9	2.9	1.9	-	1.1	-	-	1.9	1.5	1.6
	C203	2.9	2.6	1.8	1.9	1.9	1	1.9	-	1.9	1	1	1	1.9	1
3	C204	3	3	1	2	3	1	1	-	1	1	. 1	1	-	1
	C205	3	1.7	1.8	1.8	1.3	-	-		-	-	-	-	-	-
	C206	1.8	1.7	1.7	1.3	2.3	1.5	1.5	1	1.5	1	1.5A			1.3
	C207	1	1	-	-	1.5	1.8	60)	1.5	_	SEBH K	M.Phil	B.Ed	-	-
	C208	2.6	1.8	2.6	2.3	3	2.2	1.3	M.78	0112.5	PRINC	ce)2.3n.	2.7	2.3	2.3

othi Engineering College

Engineering College NAAC Accredited College with MER Accredited Programmes*

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

Approved by ACCTE & affiliated to APJ ADDITI National Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 PH; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-274777

JYOTHI HILLS, VETILIATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 Ph; +91-4884-259000, 274423 FAX: 04884-259000, 274423 FAX: 04884-259000, 274427

JYOT

C209 2 1.8 1.2 - - - - - 1 - - 1 1																
		C209	2	1.8	1.2	-	-	-	-	-	1	-		1	1	
4 C212 3 2.5 2.5 2.1 1 - - - - 1 3 1 2 1 2		C210	2.9	2.9	1	1	1	1.9	-	-	-	-	-			1.9
4		C211	3	2.4	2.8	2.6	1.5	3	2.5	1	-	1	-	2	2.7	
C213	1	C212	3	2.5	2	1	1	-	-	-	1	3			1	
C215 3 2.8 2.6 2.4 1.6 2.2 2.3 1.4 2.3 2 1.3 2.2 1.7 2	•	C213	3	2.6	2.5	2.3	2.4	2.4	2.6	2.3	2.7	2.3	2	2.4	3	
C216 3 3 2.0 2.18 1 - - - - - - - 1 3 2.2		C214	1.3	1.3	0.9	1.3	0.9	1.1	0.9	1.9	1.4	1.9	1.3	0.9	0.9	0.9
Ca01 1.7 1.6 1.4 0.6 0.7 1.6 1 0.6 0.6 - - 1.1 1.1 -		C215	3	2.8	2.6	2.4	1.6	2.2	2.3	1.4	2.3	2	1.3	2.2	1.7	2
C302 2.8 2.8 2.5 2.5 2.5 2.2 1.9 2.3 1.9 2.3 1.9 1.7 2		C216	3	3	2.2	1.8	1	-	-	-	-	-		1	3	2.2
6 Color 3 2.4 2 1.2 1.4 - 1 1.5 1 1 2.6 2.6 C304 3 2.7 2 3 1 1 - 2 2 1 1 1 1 C305 1.6 2.2 1.4 2.2 1.4 1.8 1.8 2.2 1.8 1.4 1.4 2.4 1 1.7 C306 2 1.8 1.6 1.3 1 1 2 1 -		C301	1.7	1.6	1.4	0.6	0.7	1.6	1	0.6	0.6	-	-	1.1	1.1	-
S		C302	2.8	2.8	2.5	2.5	2	2.5	2.2	1.9	2.3	1.9	2.3	1.9	1.7	2
6 C305		C303	3	2.8	3	2.4	2	1.2	1.4	-	1	1.5	1	1	2.6	2.6
6	_	C304	3	3	2.7	2	3	1	1	-	2	2	1	1	1	1
6 C307 1.9 1.9 1.9 - - 1.9 1.9 1 - - - 1 1 1 1 1 1	5	C305	1.6	2.2	1.4	2.2	1.4	1.8	1.8	2.2	1.8	1.4	1.4	2.4	1	1.7
C308 2.5 3 2.7 2.5 1.8 1.8 2 1 2.7 2.7 2 2 2 2 1 1 1 C310 2.4 2.3 2.1 2.1 0.8 0.8 0.8 0.8 0.8 0.8 1.6 0.8 2.4 - C311 0.6 0.5 0.5 0.2 0.5 0.2 - 0.2 0.2 0.2 0.2 0.3 2.8 2.8 2.6 2.6 1.9 1.5 1.4 1.9 0.9 2.3 2.8 - 2.3 2.5 2.8 2.8 2.1 1.8 1.6 1.2 1.6 1.6 1.2 1.1 1.4 0.9 1.1 1.1 1.1 1.1 2.3 3 3 3 2.3 2.4 2.1 1.8 1.6 1.2 1.6 1.6 1.2 1.1 1.4 0.9 1.1 1.1 1.1 1.1 2.3 2.3 2.5 2.8 2.6 2.8 1.8 3 2 3 2 1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 1 2		C306	2	1.8	1.6	1.3	1	1	2	1	-	-	-	-	-	-
C309 3 2.4 2.6 2.2 1 3 1.7 2 2 2 2 2 2 1 1 1 1 C310 2.4 2.3 2.1 2.1 0.8 0.8 0.8 0.8 0.8 0.8 1.6 0.8 2.4 - C311 0.6 0.5 0.5 0.2 0.5 0.2 - 0.2 0.2 0.2 0.2 C312 2.8 2.6 2.6 1.9 1.5 1.5 1.4 1.9 0.9 2.3 2.8 - 2.3 2.5 2.8 C313 - 0.8 1.9 1.5 1.5 - 2.1 0.8 1.9 - 2 2.1 C314 1.8 2.1 1.8 1.6 1.2 1.6 1.6 1.2 1.1 1.4 0.9 1.1 1.1 1.1 C315 2.4 2 1 2.3 2.5 1.4 2.5 2 3 2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 2 2 2		C307	1.9	1.9	1.9	-	-	1.9	1.9	1	-	•		1	1	1
C310 2.4 2.3 2.1 2.1 0.8 0.8 0.8 0.8 0.8 0.8 1.6 0.8 2.4 - C311 0.6 0.5 0.5 0.2 0.5 0.2 - 0.2 0.2 0.2 0.2 C312 2.8 2.6 2.6 1.9 1.5 1.4 1.9 0.9 2.3 2.8 - 2.3 2.5 2.8 C313 - 0.8 1.9 1.5 1.5 - 2.1 0.8 1.9 - 2 2.1 C314 1.8 2.1 1.8 1.6 1.2 1.6 1.6 1.2 1.1 1.4 0.9 1.1 1.1 1.1 C315 2.4 2 1 2.3 2.5 1.4 2.5 2 3 2 2 2.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		C308	2.5	3	2.7	2.5	1.8	1.8	2	1	2.7	2.7	2	2	2	2.7
C311 0.6 0.5 0.5 0.2 0.5 0.2 - 0.2 0.2 0.2 0.2 C312 2.8 2.6 2.6 1.9 1.5 1.4 1.9 0.9 2.3 2.8 - 2.3 2.5 2.8 C313 - 0.8 1.9 1.5 1.5 - 2.1 0.8 1.9 - 2 2.1 C314 1.8 2.1 1.8 1.6 1.2 1.6 1.6 1.2 1.1 1.4 0.9 1.1 1.1 1.1 C315 2.4 2 1 2.3 2.5 1.4 2.5 2 3 2 2 2.3 3 3 3 C316 2.8 1.8 3 2 3 2 1 1 2 2 2 2 2 1 2 2 1 2 C402 1.6 2.2 2.4 2 0.9 2.7 1.5 1.8 1.8 1.8 1.8 1.8 2.7 0.9 0.9 C403 2.8 2.8 2.8 2.8 2.6 2 1.2 1.2 1 1 1 2 2.3 1.5 1.8 1.8 1.8 C404 2 1.7 1.3 1.7 - 1 1 1 1 3 1.5 1.5 C405 3 2.4 2.8 2.6 1.5 3 2.5 1 - 1 - 3 2.7 - C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 0.8 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1 2 2 2 2 3 3 1 2 2 2 3 1 2 2 2 3 3 1.5 1.5 1.5 C405 2.3 2.4 2.8 2.6 2.2 2.4 1 1 1 1 2 2 2 2 2 3 1 2 2 3 1.5 1.5 1.5 C405 3 2.4 2.8 2.6 1.5 3 2.5 1 - 1 - 3 2.7 - 3 2.7 - C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 0.8 2.5 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1 2 2 2 2 3 3 1 2 2 2 3 1 2 2 2 3 3 1 2 2 3 3 3 2 3 3 3 3		C309	3	2.4	2.6	2.2	1	3	1.7	2	2	2	2	2	1	1
C312 2.8 2.6 2.6 1.9 1.5 1.4 1.9 0.9 2.3 2.8 - 2.3 2.5 2.8 C313 - 0.8 1.9 1.5 1.5 - 2.1 0.8 1.9 - 2 2.1 C314 1.8 2.1 1.8 1.6 1.2 1.6 1.6 1.2 1.1 1.4 0.9 1.1 1.1 1.1 C315 2.4 2 1 2.3 2.5 1.4 2.5 2 3 2 2 2.3 3 3 C316 2.8 1.8 3 2 3 2 1 1 2 2 2 2 2 1 2 C401 3 2.8 2.8 2.8 1 1 1 1 1 1 1 2 2 3 3 3 C402 1.6 2.2 2.4 2 0.9 2.7 1.5 1.8 1.8 1.8 1.8 2.7 0.9 0.9 C403 2.8 2.8 2.8 2.8 2.6 2 1.2 1.2 1 1 1 2.3 1.5 1.8 1.8 1.8 C404 2 1.7 1.3 1.7 - 1 1 1 1 3 1.5 1.5 C405 3 2.4 2.8 2.6 1.5 3 2.5 1 - 1 - 3 2.7 C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1.8 1.2 1.4 2.3 1 1.3 1.7 - 3 2 1.6 C409 2.8 3 2.6 2.2 2.4 1 1 1 1 1 2 2 2 2 2 3 1 2 C409 2.8 3 2.6 2.2 2.4 1 1 1 1 1 2 2 2 2 2 3 1 2 C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2 2.9 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 CAUS 1.3 2.7 1.5 1.6 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 2.9 C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C410 2.3 3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7		C310	2.4	2.3	2.1	2.1	0.8	0.8	0.8	0.8	0.8	0.8	1.6	0.8	2.4	-
6		C311	0.6	0.5	0.5	0.2	0.5	-	-	-	-	0.2	-	0.2	0.2	0.2
C313 - 0.8 1.9 1.5 1.5 - 2.1 0.8 1.9 - 2 2.1 C314 1.8 2.1 1.8 1.6 1.2 1.6 1.6 1.2 1.1 1.4 0.9 1.1 1.1 1.1 1.1 1.1 C315 2.4 2 1 2.3 2.5 1.4 2.5 2 3 2 2 2 2.3 3 3 3 C316 2.8 1.8 3 2 3 2 1 1 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2		C312	2.8	2.6	2.6	1.9	1.5	1.4	1.9	0.9	2.3	2.8	-	2.3	2.5	2.8
C315 2.4 2 1 2.3 2.5 1.4 2.5 2 3 2 2 2.3 3 3 2 2 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2	6	C313	_	0.8	1.9	1.5	1.5	-	2.1	0.8	1.9	-	2	2.1	-	-
C316 2.8 1.8 3 2 3 2 1 1 2 2 2 2 1 2 1 2 C401 3 2.8 2.8 2.8 1 1 1 1 1 1 1 2 3 3 3 - C402 1.6 2.2 2.4 2 0.9 2.7 1.5 1.8 1.8 1.8 1.8 2.7 0.9 0.9 C403 2.8 2.8 2.8 2.6 2 1.2 1.2 1 1 1 2 2.3 1.5 1.8 1.8 C404 2 1.7 1.3 1.7 - 1 1 1 1 3 1.5 1.5 C405 3 2.4 2.8 2.6 1.5 3 2.5 1 - 1 - 3 2.7 - C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1.2 2 2 2 3 1 2 C408 1.3 2 1 1.8 1.2 1.4 2.3 1 1.3 1.7 - 3 2 1.6 C409 2.8 3 2.6 2.2 2.4 1 1 1 1.2 1.8 1 3 1 1.3 C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7		C314	1.8	2.1	1.8	1.6	1.2	1.6	1.6	1.2	1.1	1.4	0.9	1.1	1.1	1.1
C401 3 2.8 2.8 2.8 1 1 1 1 1 1 2 3 3 3 - C402 1.6 2.2 2.4 2 0.9 2.7 1.5 1.8 1.8 1.8 1.8 2.7 0.9 0.9 C403 2.8 2.8 2.8 2.6 2 1.2 1.2 1 1 1 1 2.3 1.5 1.8 1.8 C404 2 1.7 1.3 1.7 - 1 1 1 1 3 1.5 1.5 C405 3 2.4 2.8 2.6 1.5 3 2.5 1 - 1 - 3 2.7 - C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1.1 1 2 2 2 3 1 2 C408 1.3 2 1 1.8 1.2 1.4 2.3 1 1.3 1.7 - 3 2 1.6 C409 2.8 3 2.6 2.2 2.4 1 1 1 1.2 1.8 1 3 1 1.3 C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7		C315	2.4	2	1	2.3	2.5	1.4	2.5	2	3	2	2	2.3	3	3
7 C402 1.6 2.2 2.4 2 0.9 2.7 1.5 1.8 1.8 1.8 2.7 0.9 0.9 C403 2.8 2.8 2.6 2 1.2 1.2 1 1 1 2.3 1.5 1.8 1.8 C404 2 1.7 1.3 1.7 - 1 1 1 - - - 3 1.5 1.8 1.8 C405 3 2.4 2.8 2.6 1.5 3 2.5 1 - 1 - 3 2.7 - C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1.1 1 0.8 0.8 2.5 2.5 2.5 C408 1.3 2 1 1.8 1.2 1.4 2.3 1 1.3 1.7 - 3 2		C316	2.8	1.8	3	2	3	2	1	1	2	2	2	2	1	2
7 C402 1.6 2.2 2.4 2 0.9 2.7 1.5 1.8 1.8 1.8 1.8 2.7 0.9 0.9		_		2.8	2.8	2.8	1	1	1	1	1	1	2	3	3	-
C403 2.8 2.8 2.8 2.6 2 1.2 1.2 1 1 1 2.3 1.5 1.8 1.8 C404 2 1.7 1.3 1.7 - 1 1 1 1 3 1.5 1.5 C405 3 2.4 2.8 2.6 1.5 3 2.5 1 - 1 - 3 2.7 - C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1 2 2 2 3 1 2 C408 1.3 2 1 1.8 1.2 1.4 2.3 1 1.3 1.7 - 3 2 1.6 C409 2.8 3 2.6 2.2 2.4 1 1 1 1 1.2 1.8 1 3 1 1.3 C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7			1.6	_	2.4	2	0.9	2.7	1.5	1.8	1.8	1.8	1.8	2.7	0.9	0.9
7	27		_	_	_	_	_	_	_	_	_	_	_	_	1.8	1.8
7		C404	2	1.7	1.3	1.7	-	1	1	1	-	-	-	3	1.5	1.5
C406 2.1 2.1 1.9 2.5 2.2 1.2 1 1.1 1 0.8 0.8 2.5 2.5 2.5 C407 2.8 1.8 3 2 3 2 1 1 2 2 2 2 3 1 2 2 2 3 1 2 2 2 2		C405	3	2.4	2.8	2.6	1.5	3	2.5	1	-	1	-	3	2.7	-
C407 2.8 1.8 3 2 3 2 1 1 2 2 2 3 1 2 C408 1.3 2 1 1.8 1.2 1.4 2.3 1 1.3 1.7 - 3 2 1.6 C409 2.8 3 2.6 2.2 2.4 1 1 1 1 1.2 1.8 1 3 1 1.3 C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7	7	C406	2.1	2.1	1.9	2.5	2.2	1.2	1	1.1	1	0.8	0.8	2.5	2.5	2.5
C408 1.3 2 1 1.8 1.2 1.4 2.3 1 1.3 1.7 - 3 2 1.6 C409 2.8 3 2.6 2.2 2.4 1 1 1 1 1.2 1.8 1 3 1 1.3 C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2.9 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 1.7 2.2 2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 1.9 1.7 2.2 2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 1.9 1.7 2.7 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9			_	_	_	_	_	_	1	1	2	2	2	3	1	2
C409 2.8 3 2.6 2.2 2.4 1 1 1 1.2 1.8 1 3 1 1.3 C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2.9 2.9 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 1.9 1.7 2.2 2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 1.9 1.7 2.7 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9			_	_	_	_	_	1.4	2.3	1	1.3	1.7	-	3	2	1.6
C410 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 - 1 1 2 2.9 2.9 2.9 2.9 2.9 C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 2.3 2.7 1.6 1.6 1.4 1.0 C415 1.7 C414 1.9 1.9 2.3 2.7 1.6 1.6 1.4 1.0 C415 1.7 C414 1.9 1.9 2.3 2.7 1.6 1.6 1.4 1.0 C415 1.7 C414 1.9 1.9 2.3 2.7 1.6 1.6 1.4 1.0 C415 1.7 C415 1			_	_	_	_	_	_	_	_	_		1	3	1	1.3
C411 2.1 1.9 1.4 1.6 1.6 1.3 1.7 1.1 1.5 1 1.9 2.7 2.9 2.9 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7 C414 1.9 1.9 2.7 2.7 1.6 1.6 1.4 1.9 C. C415 1.7 C414 1.9 1.9 2.7 2.7 2.8 2.9 2.9			-	_	_	+	-		_		_	-	_	-	_	_
8 C412 1.9 1.4 - 1.2 0.9 1.1 - 1.6 2 - 1.9 2.8 0.9 - C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7		_	_	-	_	_	_	_	_	-	_			_	_	-
8 C413 2.3 1.6 1.9 1.9 1.7 2.2 2 2 1.9 1.3 1.4 2.6 1.2 1.7			-	-		_	_	-	_	_	_	 	_		_	
C444 4 9 4 9 2 2 2 7 4 6 4 6 4 4 4 4 9 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1	8		_	-	-	_	-	-	2	-	-	1.3	_	2.6	1.2	1.7
TO ALL MENT DE LA MARIA DEL MARIA DEL MARIA DE LA MARIA DE LA MARIA DE LA MARIA DEL MARI				-	-		-	16	1.4	179	215	Y 40S	PH KA	LAYAT	F F2.3	2.5

AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR
JYOTHI HILLS, VETTIKATTIRI P.O. CHERUTHURUTHY, THRISSUR, PIN-679531 PH: +91-4884-259000, 274423 FAX: 04884-274777
rogrammes in Computer Science & Engineering, Electronics & Communication Engineering, Electronics Engineering and idloid to the academic years 2016-2022. NBA accredited & Tech Programme in Civil Engineering valid for the academic years 2019-2022.

C415	2	2	2	-	-	2	2 .	1	-			3	1	1
C416	2.2	2.4	2.2	2	2.8	2.4	1.6	2	2	2.8	1.6	3	1	3
C417	2.8	2.4	2.3	2.5	2.4	2.3	2	1.7	2.4	2.2	2.2	3	3	3
C418	1.4	1.2	1	1	1	2.3	1.3	1.2	1.3	1.6	1	3	1.6	1.2

OVER ALL ATTAINMENT														
DIRECT	2.4	2.2	2	1.9	1.8	1.8	1.7	1.4	1.7	1.6	1.6	2	1.7	1.7
INDIRECT	2.5	2.3	2.4	2.1	2.3	2.2	2.3	2.1	2.3	2.3	2.4	2.2	2.3	2.3
PO ATTAINMENT	2.4	2.3	2.1	2	2.2	2	1.9	1.6	1.9	1.8	2.1	2.1		
PSO ATTAINMENT				_									1.9	1.9

ACTION PLAN FOR PROGRAM OUTCOMES

PO	Target Level	Attainment Level	Observations
			mathematics, science, engineering complex engineering problems.
PO1	2.5	2.4	Target nearly achieved
Action 1: M		attend the class regularly, refer	r available library books and to

view & explore online classes such as NPTEL etc.

Action 2: Additional classes /discussions were conducted to impart basic knowledge and to understand how this knowledge is applied in solving the problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

	PO2	2	2.3	uested Dr.	Target SUNNY	level achieved JOSEPH KALAYATHANKAL
١			/	200	chi Tach	MCA M SC. M PRII. B.EU

Action 1: Encouraged Students to write Research papers and to perform research literature for projects Ph.D (Computer Science),

Engineering College NAAC Accredited College with HSI Accredited Programmes*

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

ACENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR JYOTH HILLS, VETIKATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 PH; +91: 4884-259000, 274423 FAX: 04884-274777

NBA accredited B.Tech Programmes in Computer Science & Engineering. Electronics & Communication Engineering. Electrical & Electronics Engineering and Mechanical Engineering valid for the academic years 2016-2022. NBA accredited B.Tech Programme in Civil Engineering valid for the academic years 2019-2022.

DO2 D !	/1 1	alutions: Design colution	one for	compley engineering problems and
				complex engineering problems and
				ds with appropriate consideration for
the public hea	lth and safety, and t	he cultural, societal, and	environr	mental considerations.
PO3	2.5	2.1		Target nearly achieved
Action 1: In re	egular classes and t	utorial classes more focus	s is give	n on problem solving.
	ents are encouraged ental considerations		hich pro	vide design solutions for societal
Action 3: Stu	dents are encourage	ed to take part in technical	events.	
PO4: Condu	ct investigations of	of complex problems: U	Jse rese	earch-based knowledge and research
				etation of data, and synthesis of the
	provide valid conc		•	
illioillation to	, pro ride raine com			
PO4	2.5	2	Target	nearly achieved
				• 000 000
Action 1: St	udents are encour	aged to participate in t	he sem	inars and conference and technical
competitions				
	dents are motivated	to involve in the consulta	ncies ar	nd R&D projects taken up by the
Action 3: A	dditional /open er	nded experiments are t	aken uj	p to enhance sense of design and
development	of students.			
PO5:Modern	tool usage: Crea	te, select, and apply app	propriate	e techniques, resources, and modern
engineering a	and IT tools including	ng prediction and modeli	ng to co	omplex engineering activities with an
understanding	g of the limitations.			
PO5	2.5	2.2	Target	nearly achieved
Action 1: AD	DO ON Courses, Ser	minars ,Workshops and p	rogramı	mes are conducted to demonstrate the
use of latest to	ools.			
Action 2: Stud	dents are motivated	to use the latest software	tools in	n their project work.
PO6: The e	ngineer and socie	ty: Apply reasoning info	rmed by	y the contextual knowledge to assess
societal, heal	th, safety, legal an	d cultural issues and the	e conse	quent responsibilities relevant to the
professional e	engineering practice			
PO6	2.5	2	sted arg	et neany yachi syed KALAYATHANKA
		True Copy Atte		Ph.D (Computer Science), Ph.D (Maths)

Engineering College NA AC Accredited College with MB4 Accredited Programmes*

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF EXCELLENCE BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

A CENTRE OF THE CATHOLIC ARCHDIOCESE OF TR

Action 1: Students science and engin		o involve more in developin	ng societal application oriented Computer
		concerns and social aspec ge of engineering practices	ts, students are motivated to visit
Action 3: Several	socially and rela	ated activities are organized	and conducted by the College
PO7: Environm	ent and sustain	nability: Understand the	impact of the professional engineering
solutions in socie	etal and environ	mental contexts, and demo	onstrate the knowledge of, and need for
sustainable develo			
PO7	2	1.9	Target nearly achieved
Action1: Students	are motivated to	participate in seminars/wo	rkshops and socially related activities to
create awareness of	on environment a	and sustainability issues	
	are encouraged	to involve more in environ	ment friendly computer engineering
project works. Action 3: Several	social related act	tivities are organized and co	anducted by the College
			shadeted by the conege
PO8: Ethics: Apr	olv ethical princi	ples and commit to professi	ional ethics and responsibilities and norms
		pres and commit to professi	ional ethics and responsionness and norms
of the engineering	practice.		
PO8	1.9	1.6	
	1.7	1.0	Target achieved
	1		
Action1: Invited t arranged for stude	alks and interac	tive sessions with profession	onals of high integrity and credibility are
Action1: Invited t arranged for stude	alks and interac	tive sessions with profession	
Action1: Invited t arranged for stude	alks and interac nts.	tive sessions with profession:	onals of high integrity and credibility are
Action1: Invited t arranged for stude PO9 :Individual	alks and interac nts.	tive sessions with profession: Function effectively as an arry settings.	onals of high integrity and credibility are individual, and as a member or leader in
Action1: Invited t arranged for stude PO9:Individual diverse teams, and	alks and interacents. and team work in multidiscipling	tive sessions with profession:	onals of high integrity and credibility are
Action1: Invited t arranged for stude PO9 :Individual diverse teams, and PO9	alks and interacents. and team work in multidisciplin	tive sessions with profession: Function effectively as an mary settings.	onals of high integrity and credibility are individual, and as a member or leader in Target achieved
Action1: Invited to arranged for stude PO9:Individual diverse teams, and PO9 Action1: Students	alks and interacents. and team work in multidisciplin	tive sessions with profession: Function effectively as are mary settings. 1.9	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities
Action1: Invited to arranged for stude PO9:Individual diverse teams, and PO9 Action1: Students	alks and interacents. and team work in multidisciplin	tive sessions with profession: Function effectively as are mary settings. 1.9	onals of high integrity and credibility are individual, and as a member or leader in Target achieved
Action1: Invited to arranged for stude. PO9:Individual diverse teams, and PO9 Action1: Students like doing experim	alks and interacents. and team work in multidisciplin 1.85 are grouped as teams in laborator	tive sessions with professions: Function effectively as an mary settings. 1.9 eam members to function entry courses , technical project	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities work, and other group activities.
Action1: Invited tarranged for stude PO9:Individual diverse teams, and PO9 Action1: Students like doing experim	alks and interacents. and team work in multidiscipling 1.85 are grouped as to the tents in laborator ication: Comm	tive sessions with professions: Function effectively as an mary settings. 1.9 eam members to function entry courses , technical project unicate effectively on co	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities work, and other group activities.
Action1: Invited tarranged for stude PO9:Individual diverse teams, and PO9 Action1: Students like doing experim PO10: Commun engineering comm	alks and interacents. and team work in multidiscipling 1.85 are grouped as to the tents in laborator ication: Community and with so	tive sessions with professions: Function effectively as an mary settings. 1.9 eam members to function entry courses, technical project unicate effectively on concept at large, such as, being the sessions with professions.	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities work, and other group activities. Implex engineering activities with the ing able to comprehend and write effective
Action1: Invited tarranged for stude: PO9:Individual diverse teams, and PO9 Action1: Students like doing experim PO10: Commun engineering comm	alks and interacents. and team work in multidiscipling 1.85 are grouped as to dents in laborator ication: Community and with so documentation,	tive sessions with professions: Function effectively as an mary settings. 1.9 eam members to function entry courses, technical project unicate effectively on concept at large, such as, being the sessions with professions.	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities work, and other group activities.
Action1: Invited tarranged for stude PO9:Individual diverse teams, and PO9 Action1: Students like doing experim PO10: Commun engineering comm reports and design PO10	alks and interacents. and team work in multidiscipling 1.85 are grouped as to dents in laborator ication: Community and with so documentation, 1.86	tive sessions with professions: Function effectively as are mary settings. 1.9 eam members to function entry courses , technical project unicate effectively on conciety at large, such as, being make effective presentation.	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities work, and other group activities omplex engineering activities with the ing able to comprehend and write effective is, and give and receive clear instructions. Target achieved
Action1: Invited tarranged for stude PO9:Individual diverse teams, and PO9 Action1: Students like doing experim PO10: Commun engineering comm reports and design PO10 Action1: Soft skill	alks and interacents. and team work in multidiscipling 1.85 are grouped as to dents in laborator ication: Community and with so documentation, 1.86 s training and pro-	tive sessions with professions: Function effectively as are mary settings. 1.9 eam members to function entry courses , technical project unicate effectively on conciety at large, such as, being make effective presentation.	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities work, and other group activities with the ing able to comprehend and write effective is, and give and receive clear instructions. Target achieved Target achieved
Action1: Invited to arranged for stude PO9:Individual diverse teams, and PO9 Action1: Students like doing experime PO10: Commun engineering communerports and design PO10 Action1: Soft skill communication skill communication skill	alks and interacents. and team work in multidiscipling 1.85 are grouped as to dents in laborator ication: Community and with so documentation, 1.86 s training and profills.	tive sessions with professions: Function effectively as are mary settings. 1.9 eam members to function entry courses , technical project unicate effectively on concept at large, such as, being make effective presentation. 1.8 essentation sessions are given	Target achieved
Action1: Invited to arranged for stude PO9:Individual diverse teams, and PO9 Action1: Students like doing experime PO10: Commun engineering communerports and design PO10 Action1: Soft skill communication skill communication skill arranged for students.	alks and interacents. and team work in multidiscipling 1.85 are grouped as to dents in laborator ication: Community and with so documentation, 1.86 s training and profills.	tive sessions with professions: Function effectively as are mary settings. 1.9 eam members to function entry courses , technical project unicate effectively on concept at large, such as, being make effective presentation. 1.8 essentation sessions are given	Target achieved
Action1: Invited tarranged for stude PO9:Individual diverse teams, and PO9 Action1: Students like doing experim PO10: Commun engineering comm reports and design PO10 Action1: Soft skill communication skill	alks and interacents. and team work in multidiscipling 1.85 are grouped as to dents in laborator ication: Community and with so documentation, 1.86 s training and profills.	tive sessions with professions: Function effectively as are mary settings. 1.9 eam members to function entry courses , technical project unicate effectively on concept at large, such as, being make effective presentation. 1.8 essentation sessions are given	onals of high integrity and credibility are individual, and as a member or leader in Target achieved ffectively to carry out various activities work, and other group activities with the ing able to comprehend and write effective is, and give and receive clear instructions. Target achieved Target achieved

Engineering College

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHUR

JYOTHI HILLS, VETTIKATTIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 PH: +91-4884-259000, 274423 FAX: 04884-274777

The Programmes in Computer Science & Engineering, Electronics & Communication Engineering, Electronics Engineering and any valid for the academic years 2016-2022. NBA accredited 8.Tech Programme in Civil Engineering valid for the academic years 2019-2022.

PO11	1.86	2.1	Target achieved
Festivals. Action 2:Inv conducted.	ited talks and discussions	of case studies by ex	gement during Technical & Non – Technical sperienced professionals from the field are
	long learning: Recognize and life-long learning in the		nave the preparation and ability to engage in of technological change
PO12	1.99	2.1	Target nearly achieved

ACTION PLAN FOR PROGRAM SPECIFIC OUTCOMES

PSO	Target Level	Attainment Level	Observations
PSO 1 : An ab	oility to apply knowle	dge of data struc	ctures and algorithms appropriate to computational
PSO1	2	1.9	Target nearly achieved
PSO 2 : An a		edge of operating	rts and industrial visits are conducted ng systems, programming languages, data management, ents
PSO2	1.82	1.9	Target achieved

Dr. SUNNY JOSEPHO ANY TEST Alssessment tools

M.Tech, MCA, M.Sc, M.Phil, B.Ed

Ph.D (Computer Science), Ph.D (Maths) PRINCIPAL pering College

Engineering College

ogrammes in Computer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering and clid for the academic years 2016-2022. NBA accredited B.Tech Programme in Civil Engineering valid for the academic years 2019-2022

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR JYOTHI HILLS, VETTIKATTIRI P.O. CHERUTHURUTHY, THRISSUR, PIN-679531 PH; +91-4884-259000, 274423 FAX: 04884-274777

PO ATTAINMENTS THROUGH CO/ EXTRA CURRICULAR ACTIVITIES & STUDENTS PARTICIPATION (2015-2019)

		Assess	PO1	POZ	P03	PO4	POS	POS	P07	P08	P09	PO10	PO11	PO12	P501	PS
-			-	-	-	3	3	3	1	Τ.	Τ.		-	3	3	
_	Guest Lecturers (Co-Curricular)	3	3	3	3	-	-	1	-	-	3	-		3	3	
2	Add-on Courses (Co-Curricular)	3	3	3	3	3	3		-	-		2	-	2	2	
3	Projects Exhibition (Co-Curricular)	2	2	2	2	2		-			2	_		3	3	
4	Paper Presentations (Co-Curricular)	3	3	3	3	3	-	·		-	3	3		-	-	-
5	NSS Activities (Extra-Curricular)	1		٠	-		•	1	1	1	1	-				
6	Program on Environment/ Sustainability Organized (Co-Curricular)	3				•		-	3	-		*		-	-	-
No.	Programs on Ethics (Co-Curricular)	2								2	•	-		0	0	-
7	Library, Internet Hours (Co-Curricular)		0	0	0	0		·		-		-	-	0	0	-
9	Students' Seminar & English Communication Hours (Co-Curricular)		0	0		-	•		•		0	0	3	-		
10	Entrepreneurships - Lecturers (Co-Curricular)	3		•	-	•	•		•		-					
11	Students' Qualification in English Communication/Certification (Co-Curricular)	3	-	-	•	•	٠	*	-	3	3	-				
-	Programs on Health or Course on Human	2		2				2	-	1					_	-
12	Anatomy					,		0				-		-	-	-
13	Programs on Safety Engineering		-		_						3	-				
	Students' Participation in Cultural Events,	3			*	-	-	-		-	2	-	-	- 1	-	
14	Activities	2			*			-	-	-	-			3	3	3
15	Spoorts/ Extra Curicular	3	3	3	3	3	3	3	3	3	3	-		3	3	3
16	Students' Internships in Industries/Projects	3	3	3	3	3							-			
17	MOOC/NPTEL	,	2.4	2.4	2.3	2.3	3.0	2.4	2.0	1.8	1.9	1.7	3.0	2.4	2.4	2.4

MAPPING OF EXTRA/CO CURRICULAR ACTIVITIES TO POSE THE COPY ACTIVITIES TO POSE THE COPY

Dr. SUNNY JOSEPHOKALAYATHANKAL M. Tech, MCA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Maths) PRINCIPAL

> Jyothi Engineering College Cheruthuruthy P.O.-679 531

Engineering College

affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR
JYOTHI HILLS, VETTIKATTIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 PH: +91-4884-259000, 274423 FAX: 04884-274777
regrammes in Computer Science & Engineering, Electronics & Communication Engineering. Electrical & Electronics Engineering and collidator the academic years 2014-2022. NBA accredited & Each Programme in Civil Engineering valid for the academic years 2019-2022.

T	IAPPING OF EXTRA/C	UP	KUC	IRA	M SI	ECI	FIC	TUO	CON	MES					
		P O I	P O 2	P O 3	P O 4	P O 5	P O 6	P 0 7	P O 8	P O 9	PO 10	PO 11	PO 12	PS O1	PS Of
4	Guest Lecturers (Co- Curricular)	1	1	1	4	1	1		min				V	1	V
2	Add-on Courses (Co- Curricular)	V	1	V	4	4		in sign		4			V.	1	V
3	Projects Exhibition (Co- Curricular)	1	V	1	V					V	V		1	V	N
4	Paper Presentations (Co- Curricular)	1	V	V	V					V	1	HA	V	1	V
5	NSS Activities (Extra- Curricular)						1	4	1	1					
6	Program on Environment/ Sustainability Organized (Co-Curricular)							V			ingeligi				
7	Programs on Ethics (Co- Curricular)								1	6				E SELEC	
0	Library, Internet Hours (Co-Curricular)	1	V	V	1						-		1	4	1
1	Students' Seminar & English Communication Hours (Co-Curricular)	V	1							4	1		4	1	,
1 2	Entrepreneurships -											√			
1 3	Students' Qualification in English Communication/Certificat					7 11 200			4	V					
1 4	Anatomy		1				4								
5	Engineering						V								
L	Students* Participation in Cultural Events, Activities									1					
1	9 Sports/ Extra Curicular									. 1					
	2 Students' Internships in 3 Industries/Projects	1	V	V	1	V	V	V	V	1			1	1	,
	MOOC/NPTEL	V	V	V	V					1			V	V	-

True Copy Attested

Dr. SUNNY JOSEPH KALAYATHA! M.Tech, MCA, M.Sc, M.Phil, B.E. Ph.D (Computer Science), Ph.D (Meths) PRINCIPAL Jyothi Engineering College Cheruthuruthy P.O.- 679 5

Jyoth Engineering College NAAC Accredited College with 1871 Accredited Programmes

proved by AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHUR
INOTHI HILLS, VETIKATIRI P.O. CHERUTHURUTHY, THRISSUR, PIN-679531 PH: +91-4884-259000, 274423 FAX: 04884-274777

NBA accredited B.Tech Programmes in Computer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering and Mechanical Engineering valid for the academic years 2016-2022, NBA accredited B.Tech Programme in Civil Engineering valid for the academic years 2019-2022

JYOTHI ENGINEERING COLLEGE, CHERUTHURUTHY DEPARTMENT OF CIVIL ENGINEERING

Exit Survey Form

Name :

ALBIN JOSEPH

Date: 15/05/201

Year of Graduation

: 2019

Register Number

JECISCE001

Address

: EMMATTY HOUSE KUTTUR, P.O THRISSUR

Phone: 8606938366

E-Mail: albin ej kuttur@gmail.com

 Assessment of Knowledge, Skills, Abilities and Attributes acquired at Jyothi Engineering College.

Please rate each of the following Knowledge, skills, abilities, attitudes (K, S, A) or attribute in terms how well Jyothi Engineering College inculcated them in your education.

SL No.	Overall, are you satisfied with:	Extremely Satisfied	Satisfied	Somewhat Satisfied
1	Basic knowledge in mathematics, science, engineering and humanities.		~	
2	Ability to identify, design, analyze and solve Civil Engineering problems.	4	/	
3	Design / development of complex engineering problems and their solutions.		L-	
4	Use of research-based knowledge and research methods.			1
5	Demonstrate the ability to apply advanced technologies to solve contemporary and new problems.		/	
6	Awareness to apply engineering solutions in global, national, and societal contexts.	_		
7	Understanding professional engineering solutions in societal and environmental	e Copy At	lbos	

Dr. SUNNY JOSEPH KALAYATHANKAL
MYECH, MCA, M.Sc, M.Phil, B.Ed
Ph.D (Computer Science), Ph.D (Maths)
PRINCIPAL
Jyothi Engineering College
Cheruthuruthy P.O.-679 531

Engineering College NA AC Accredited College with MSA Accredited Programmes*

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE GATHOLIC ARCHDIOCESE OF TRICHUR LYOTHI HILLS. VETIKATIRI F.O. CHERUTHURUTHY, THRISSUR, PIN-679531 PH : +91 - 4884-259000, 274423 FAX: 04884-274777 Programmes in Computer Science & Engineering, Electronics & Communication Engineering, Electronics Engin valid for the academic years 2014-2022. NBA accredited & Steen Programme in Civil Engineering valid for the academic year

	contexts.			-
8	Understanding of professional and ethical responsibilities.	/	The state of the s	
9	Ability to function as an effective member in multi-disciplinary teams.		~	
10	Proficiency in English language in both communicative and technical forms.		~	20 100 20
11	Demonstrate the ability to choose and apply appropriate resource management techniques.	V		
12	Capable of self-education and a clear understanding of the value of updating their professional knowledge to engage in lifelong learning.		/	
13	Ability to integrate theory and practice to construct software systems of varying complexity.			
14	Ability to apply Civil Engineering skills, tools and mathematical techniques to analyze, design and model complex systems.			/
15	Ability to design and manage small-scale projects to develop a career in Civil Engineering field.		~	

AH ENGG.

HEAD

OF

DEPT

R PUTHURU

JYO

Signature

True Copy Attested

Dr. SUNNY JOSEPH KALAYATHANKAL M.Tech, MCA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Maths)

Jyothi Engineering College Cheruthuruthy P.O.- 679 531

affiliated to APJ Abdul Kalam Technological University

ALUMNI FEEDBACK

JYOTHI ENGINEERING COLLEGE, CHERUTHURUTHY DEPARTMENT OF CIVIL ENGINEERING

	Alumni	Survey Form	
Name : S	thine sunny		Date:
Year of G	raduation: 2016		
Sector:	Private	Public	Academia
Organizati	ion: United National factor the Fiberglak	troy Company Designation	1: Derign & Production Englacer.
Address	:		9
Phone	: 9656559195	E-Mail:	
1. Ass	essment of Knowledge, Skills,	Abilities, Attitude and Attri	butes acquired
Jyo	thi College.		

Please rate each of the following Knowledge, Skills, Abilities, Attitude and attributes in terms of how well Jyothi college inculcated them in your education.

SI. No.	Overall, are you satisfied with:	Extremely Satisfied	Satisfied	Somewhat Satisfied
1	Basic knowledge in mathematics, science, engineering and humanities.		~	
2	Ability to identify, design ,analyze and solve Civil Engineering problems.		/	
3	Design / development of complex engineering problems and their solutions.	~		
4	Use of research-based knowledge and research methods.		/	
5	Demonstrate the ability to apply advanced technologies to solve contemporary and new problems.	/		
6	Understanding professional engineering solutions in societal and environmental contexts.		~	
.7	Awareness to apply engineering solutions in global, national, and societal contexts.	/		
8	Understanding of professional and ethical responsibilities.	M Sc. M.Ph	ATHANKAL	/

M.Tech, MCA, M.Sc, M.Phil, Ph.D (Computer Science), Ph.D (Maths)

Engineering College NAAC Accredited College with NBA Accredited Programmes*

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR

JOTHI HILLS, VETIKATIRI P.O. CHERUTHURUTHY, THRISSUR, PIN-679531 PH; +91-4884-259000, 274423 FAX: 04884-274777

In Programmes in Computer Science & Engineering, Electronics Engineering and agreed to the academic years 2016-2022. NBA accredited B.Tech Programme in Civil Engineering valid for the academic years 2019-2022.

5	Ability to function as an effective me			
10	in multi-disciplinary teams. Proficiency in English language in communicative and technical forms.			
11	Demonstrate the ability to choose apply appropriate project res	ource	V	
12	Capable of self-education and understanding of the value of upd their professional knowledge to engalife-long learning.	ge in		
13	Ability to integrate theory and practic construct various infrastructures in various complexity.	rying		
14	Ability to apply Civil engineering s tools and mathematical techniques analyze, design and model com- systems.	s to		
	Ability to design and manage small-sea projects to develop a career in Civil engineering.	ile		
. Depa		Excellent Goo Excellent Goo Excellent Goo	od Average	
		Excellent 🗌 Goo		
Libra	77 111 1	Excellent Goo		
Com		excellent Goo		
Sport	Fort C : 1 -	xcellent Goo		
Perso	onality/Communications Skills			
And l	Development Facilities : E	xcellent Goo	d Average	
	ment Cell : TF	xcellent 🗌 Goo		
. Overa	all rating of the College : E	xcellent 🗷 Goo	d Average	
(all rating of the college : E	PH KALAYATHANK	CAL	4

Jyothi Engineering College

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University

A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHUR

JYOTHI HILLS, VERIKATURI P.O. CHERUTHURUITHY, THRISSUR, PIN-679531 PH: +91-4884-259000, 274423 FAX: 04884-274777

ISID 2007

3. Assessment of the Curriculum

		Level of Satisfa	Somewhat
Quality of Curriculum	Extremely Satisfied	Satisfied	Satisfied
Subject matter based			
Project / Task oriented		~	
Material resources availability		/	

4	Conora	Assessment	
4	t renera	ASSESSMEN	

Please answer the following questions:

A. Please list some very important skills that you think you had achieved from B.1ech	
program in Civil Engineering at Jyothi Engineering College (Programming skills,	
Leadership skills, Entrepreneurial skills etc.).	
Entrepseneunial skills -	
B. Please write down any comments or suggestions that you think will improve the B.Tech	
program in Civil Engineering at Jyothi Engineering College(Extra subjects, Additional	
Labs, Modern Tools etc.).	
Extea subject	
C. Please provide your comments about vision and mission of the department.	
True Copy Attested	
	+
L VOTHI ENO	1

Signature of Alumni

TOTHI ENGO OHEGO COLL TOTHI ENGO OHEGO COLL

r. SUNNY JOSEPH KALAYATHANKAL M. Tech, MCA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Mathe) PRINCIPAL

Jyothi Faair

Approved by AlCTE & affiliated to APJ Abdul Kalam Technological University
A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHUR
JYOTHI HILLS, VETIKATIRI P.O., CHERUTHURUTHY, THRISSUR, PIN-679531 PH: +91-4884-2590X0, 274423 FAX: D4884-274277

A accredited B.Tech Programmes in Computer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering an echanical Engineering valid for the academic years 2016-2022. NBA accredited B.Tech Programme in Civil Engineering valid for the academic years 2019-202.

EMPLOYER SURVEY FORM

JYOTHI ENGINEERING COLLEGE, CHERUTHURUTHY DEPARTMENT OF CIVIL ENGINEERING

Employer Survey Form

The purpose of this survey is to obtain Employers' input on the quality of education of undergraduate programs in Jyothi Engineering College. Your sincere cooperation would enable us to improve the quality of our graduates as per your requirements

1. Name of C	ompany/Organizat	tion : Al Nu	imi Group	, UAE	
2. Mailing Ac	idress	: Meera	n@alnuaim	i-group.com	
3. Sector :	Private	Public		Academia	

4. What are the pertinent employability skills to stay updated in current industry trends and there by improve the quality of the undergraduate program? Hard work, focus and aspiration

5. Rate the Jyothi Engineering College graduates working in your organization using the following criterion.

Put a tick mark(✓)

Knowledge, Skills, Abilities, Attitude and other Attributes expected out of Jyothi
Engineering College graduates

Sl. No.	Overall, are you satisfied with:	Extremely Satisfied	Satisfied	Somewhat Satisfied
1	Capacity for development and analysis of engineering problems and formulation of appropriate solutions, retaining professional and ethical responsibilities.	~		
2	Aptitude for self education, ability to learn new skills and a clear appreciation for the value of lifelong learning to update professional knowledge	-		
3	Understanding professional engineering	-		

True Copy Attested

Dr. SUNNY JOSEPH KALAYATHANKAL M.Tech, MCA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Maths)

PRINCIPAL

Jyothi Engineering College
Cheruthuruthy P.O.- 679 531

Approved by AICTE & affiliated to APJ Abdul Kalam Technological University A CENTRE OF EXCELLENCE IN SCIENCE & TECHNOLOGY BY THE CATHOLIC ARCHDIOCESE OF TRICHLIR JYOTHI HILLS. VETTIKATTIRI P.O. CHERUTHURUTHY, THRISSUR, PIN-679531 PH: +91-4884-259000, 274423 FAX: 04884-274777 ies in Camputer Science & Engineering, Electronics & Communication Engineering, Electrical & Electronics Engineering and ne academic years 2016-2022, NBA accredited B.Tech Programme in Civil Engineering valid for the academic years 2019-2022

solutions for sustainable development and their application in global, national and societal contexts. Competence for acquiring new skills and applying them in research and development 5 Fundamental knowledge in mathematics and science and professional fluency in English both communicative and technical forms Expertise in differentiation of management 6 techniques and possession of leadership skills that enable successful function of multi-

True Copy Attested

disciplinary teams

Name and Designation (Optional)

Dr. SUNNY JOSEPH KALAYATHANKAL M.Tech, MCA, M.Sc, M.Phil, B.Ed Ph.D (Computer Science), Ph.D (Maths) PRINCIPAL

Jyothi Engineering College Cheruthuruthy P.O.- 679 531